PROBLEM

(2004S)

If
$$f(x) = x^3 + bx^2 + cx + d$$
 and $0 < b^2 < c$, then in $(-\infty, \infty)$

- (a) f(x) is a strictly increasing function
- (b) f(x) has a local maxima
- (c) f(x) is a strictly decreasing function
- (d) f(x) is bounded

SOLUTION

(a)
$$f(x) = x^3 + bx^2 + cx + d, \ 0 < b^2 < c$$

 $f'(x) = 3x^2 + 2bx + c$
Discriminant = $4b^2 - 12c = 4(b^2 - 3c) < 0$
 $\therefore f'(x) > 0 \ \forall x \in R$

 \Rightarrow f(x) is strictly increasing $\forall x \in R$